After completing this chapter you should know

- **1** the functions secant θ , cosecant θ and cotangent θ
- **2** the graphs of sec θ , cosec θ and cot θ
- **3** how to solve equations and prove identities involving sec θ , cosec θ and cot θ
- **4** how to prove and use the identities

$$1 + \tan^2\theta = \sec^2\theta$$

and
$$1 + \cot^2 \theta = \csc^2 \theta$$

5 how to sketch and use the inverse trigonometric functions $\arcsin x$, $\arccos x$ and $\arctan x$.

Trigonometry

You need to know the functions secant θ , cosecant θ and cotangent θ .

The functions secant θ , cosecant θ and cotangent θ are defined as:

•
$$\sec \theta = \frac{1}{\cos \theta}$$

{undefined for values of θ at which $\cos \theta = 0$ }

•
$$\csc \theta = \frac{1}{\sin \theta}$$

{undefined for values of θ at which $\sin \theta = 0$ }

$$\bullet \quad \cot \theta = \frac{1}{\tan \theta}$$

{undefined for values of θ at which tan $\theta = 0$ }.

These are often written and pronounced as **sec** θ , **cosec** θ and **cot** θ .

Remember that $\cos^n \theta = (\cos \theta)^n$ for $n \in \mathbb{Z}^+$. The convention is not used for $n \in \mathbb{Z}^-$. For example, $\cos^{-1} \theta$ does not mean $\frac{1}{\cos \theta}$.

Do not confuse $\cos^{-1} \theta$ with $\sec \theta$.

As $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta$ can also be written as $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

Example 1

Use your calculator to write down the value of:

- **a** sec 280°
- **b** cot 115°.

a
$$\sec 280^\circ = \frac{1}{\cos 280^\circ} = 5.76 \text{ (3 s.f.)}$$
 Find $\cos 280^\circ$ and then use the x^{-1} key.

b $\cot 115^\circ = \frac{1}{\tan 115^\circ} = -0.466 \ (3 \text{ s.f.})$ Find $\tan 115^\circ$ and then use the x^{-1} key.

Example 2

Work out the exact values of:

- **a** sec 210°
- **b** cosec $\frac{3\pi}{4}$.

Exact here means give in surd form.

a sec
$$210^{\circ} = \frac{1}{\cos 210^{\circ}}$$

210° is in 3rd quadrant, so
$$\cos 210^\circ = -\cos 30^\circ$$
.

So sec $210^\circ = \frac{1}{-\cos 30^\circ}$

So sec
$$210^{\circ} = -\frac{2}{\sqrt{3}}$$
 or $-\frac{2\sqrt{3}}{3}$

Rationalise the denominator.

$$=\frac{1}{\sqrt{\pi}}$$

 $\frac{3\pi}{4}$ (135°) is in the 2nd quadrant, so $\sin\frac{3\pi}{4} = +\sin\frac{\pi}{4}.$

Remember that $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$, or draw a right-angled isosceles triangle and use Pythagoras' theorem.

Exercise 6A

- 1 Without using your calculator, write down the sign of the following trigonometric ratios:
 - **a** sec 300°

b cosec 190°

c cot 110°

d cot 200°

- **e** sec 95°
- **2** Use your calculator to find, to 3 significant figures, the values of
 - **a** sec 100°

b cosec 260°

c cosec 280°

d cot 550°

 $e \cot \frac{4\pi}{3}$

f sec 2.4^c

g cosec $\frac{11\pi}{10}$

- **h** sec 6^c
- **3** Find the exact value (in surd form where appropriate) of the following:
 - a cosec 90°

b cot 135°

c sec 180°

d sec 240°

e cosec 300°

f $\cot(-45^{\circ})$

g sec 60°

- **h** cosec (-210°)
- **i** sec 225°

 $\mathbf{j} \cot \frac{4\pi}{3}$

 $\mathbf{k} \sec \frac{11\pi}{6}$

- 1 $\csc\left(-\frac{3\pi}{4}\right)$
- **4** a Copy and complete the table, showing values (to 2 decimal places) of $\sec \theta$ for selected values of θ .

θ		0°	30°	45°	60°	70°	80°	85°	95°	100°	110°	120°	135°	150°	180°	210°
sec	θ	1		1.41			5.76	11.47			-2.92		-1.41			-1.15

b Copy and complete the table, showing values (to 2 decimal places) of cosec θ for selected values of θ .

θ	10°	20°	30°	45°	60°	80°	90°	100°	120°	135°	150°	160°	170°
$cosec \theta$				1.41			1		1.15	1.41			

θ	190°	200°	210°	225°	240°	270°	300°	315°	330°	340°	350°	390°
$cosec \theta$					-1.15				-2			

c Copy and complete the table, showing values (to 2 decimal places) of cot θ for selected values of θ .

θ	-90°	-60°	-45°	-30°	-10°	10°	30°	45°	60°	90°	120°	135°	150°	170°	210°	225°	240°	270°
$\cot \theta$	0	-0.58					1.73	1	0.58			-1					0.58	

6.2 You need to know the graphs of $\sec \theta$, $\csc \theta$ and $\cot \theta$.

Example 3

Sketch, in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, the graph of $y = \sec \theta$.

First draw the graph $y = \cos \theta$.

For each value of θ , the value of sec θ is the reciprocal of the corresponding value of $\cos \theta$.

In particular: as $\cos 0^{\circ} = 1$, so $\sec 0^{\circ} = 1$; as $\cos 180^{\circ} = -1$, so $\sec 180^{\circ} = -1$.

As θ approaches 90° from the left, $\cos \theta$ is +ve but approaches zero, and so $\sec \theta$ is +ve but becoming increasingly large.

As θ approaches 90° from the right, $\cos \theta$ is —ve but approaches zero, and so $\sec \theta$ is —ve but becoming increasingly large negative.

At $\theta = 90^{\circ}$ there is no value of sec θ (you may see $\pm \infty$ written for this value), so at $\theta = 90^{\circ}$ there is a break in the curve; there is a vertical **asymptote** at this point.

Compare the completed table for Question 4a in Exercise 6A with the related part of the graph in Example 3.

The graph of $y = \sec \theta$, $\theta \in \mathbb{R}$, has symmetry in the y-axis and repeats itself every 360°. It has vertical asymptotes at all the values of θ for which $\cos \theta = 0$, i.e. at $\theta = 90^{\circ} + 180n^{\circ}$, $n \in \mathbb{Z}$.

Example 4

Sketch the graph of $y = \csc \theta$.

See Chapter 8 in Book C2.

First draw the graph of $y = \sec \theta$.

CHAPTER 6

Then translate the graph of $y = \sec \theta$ by 90° to the right.

Note: You could first draw the graph of $y = \sin \theta$, and proceed as in Example 3.

Compare the completed table for Question 4b in Exercise 6A with the graph of $y = \csc \theta$ in Example 4.

The graph of $y = \operatorname{cosec} \theta$, $\theta \in \mathbb{R}$, has vertical asymptotes at all the values of θ for which $\sin \theta = 0$, i.e. at $\theta = 180n^{\circ}$, $n \in \mathbb{Z}$, and the curve repeats itself every 360°.

Example 5

Sketch the graph of $y = \cot \theta$.

First draw the graph $y = \tan \theta$.

At the values of θ where asymptotes occur on $y = \tan \theta$, the graph of $y = \cot \theta$ passes through the θ -axis.

At the values of θ where $y = \tan \theta$ crosses the θ -axis, $y = \cot \theta$ has asymptotes.

When $\tan \theta$ is small and positive, $\cot \theta$ is large and positive; when $\tan \theta$ is large and positive $\cot \theta$ is small and positive. Similarly for negative values.

Compare the graph in Example 5 with your answers to Exercise 6A, Question 4c.

The graph of $y = \cot \theta$, $\theta \in \mathbb{R}$, has vertical asymptotes at all the values of θ for which $\sin \theta = 0$, i.e. at $\theta = 180n^{\circ}$, $n \in \mathbb{Z}$, and the curve repeats itself every 180°.

Sketch, in the interval $0 \le \theta \le 360^\circ$, the graph of $y = 1 + \sec 2\theta$.

Exercise 6B

- **1 a** Sketch, in the interval $-540^{\circ} \le \theta \le 540^{\circ}$, the graphs of:
 - **i** sec θ
- ii $cosec \theta$
- iii $\cot \theta$
- **b** Write down the range of
 - **i** sec θ
- ii $cosec \theta$
- iii $\cot \theta$
- **2 a** Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \sec \theta$ and $y = -\cos \theta$.
 - **b** Explain how your graphs show that $\sec \theta = -\cos \theta$ has no solutions.
- **3** a Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \cot \theta$ and $y = \sin 2\theta$.
 - **b** Deduce the number of solutions of the equation $\cot \theta = \sin 2\theta$ in the interval $0 \le \theta \le 360^\circ$.

- **4** a Sketch on separate axes, in the interval $0 \le \theta \le 360^\circ$, the graphs of $y = \tan \theta$ and $y = \cot(\theta + 90^{\circ}).$
 - **b** Hence, state a relationship between $\tan \theta$ and $\cot(\theta + 90^\circ)$.
- **5** a Describe the relationships between the graphs of
 - $\mathbf{i} \quad \tan\left(\theta + \frac{\pi}{2}\right)$ and $\tan\theta$
- **ii** $\cot(-\theta)$ and $\cot \theta$
- iii $\csc\left(\theta + \frac{\pi}{4}\right)$ and $\csc\theta$ iv $\sec\left(\theta \frac{\pi}{4}\right)$ and $\sec\theta$
- **b** By considering the graphs of $\tan\left(\theta + \frac{\pi}{2}\right)$, $\cot(-\theta)$, $\csc\left(\theta + \frac{\pi}{4}\right)$ and $\sec\left(\theta \frac{\pi}{4}\right)$, state which pairs of functions are equal.
- **6** Sketch on separate axes, in the interval $0 \le \theta \le 360^{\circ}$, the graphs of:
 - **a** $y = \sec 2\theta$
- **b** $y = -\csc \theta$
- **c** $y = 1 + \sec \theta$
- **d** $y = \csc(\theta 30^{\circ})$
- In each case show the coordinates of any maximum and minimum points, and of any points at which the curve meets the axes.
- 7 Write down the periods of the following functions. Give your answer in terms of π .
 - **a** $\sec 3\theta$
- **b** $\csc \frac{1}{2}\theta$
- $\mathbf{c} \ 2 \cot \theta$
- **d** $sec(-\theta)$
- **8** a Sketch the graph of $y = 1 + 2 \sec \theta$ in the interval $-\pi \le \theta \le 2\pi$.
 - **b** Write down the y-coordinate of points at which the gradient is zero.
 - **c** Deduce the maximum and minimum values of $\frac{1}{1+2\sec\theta}$, and give the smallest positive values of θ at which they occur.
- You need to be able to simplify expressions, prove identities and solve equations involving secant θ , cosecant θ and cotangent θ .

Simplify

- **a** $\sin \theta \cot \theta \sec \theta$
- **b** $\sin \theta \cos \theta (\sec \theta + \csc \theta)$
- $\sin \theta \cot \theta \sec \theta$ $= \sin \theta \times \frac{\cos \theta}{\sin \theta} \times \frac{1}{\cos \theta}$
- Write the expression in terms of sin and cos, using $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\sec \theta = \frac{1}{\cos \theta}$.
- $\sec \theta + \csc \theta = \frac{1}{\cos \theta} + \frac{1}{\sin \theta}$ $=\frac{\sin\theta+\cos\theta}{\sin\theta\cos\theta}$ So $\sin \theta \cos \theta (\sec \theta + \csc \theta) \leftarrow$
- Write the expression in terms of sin and cos, using $\sec \theta = \frac{1}{\cos \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$.

Put over common denominator.

Multiply both sides by $\sin \theta \cos \theta$.

 $= \sin \theta + \cos \theta$ The given expression reduces to $\sin \theta + \cos \theta$.

Show that
$$\frac{\cot \theta \csc \theta}{\sec^2 \theta + \csc^2 \theta} = \cos^3 \theta$$

Consider LHS:

The numerator cot θ cosec θ

$$\equiv \frac{\cos \theta}{\sin \theta} \times \frac{1}{\sin \theta} \equiv \frac{\cos \theta}{\sin^2 \theta} .$$

The denominator $\sec^2 \theta + \csc^2 \theta$

$$\equiv \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}$$

$$\equiv \frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta \sin^2 \theta}$$

$$\cos^2 heta$$
 $\sin^2 heta$

$$\equiv \frac{1}{\cos^2 \theta \sin^2 \theta}$$

So
$$\frac{\cot \theta \csc \theta}{\sec^2 \theta + \csc^2 \theta}$$

$$\equiv \left(\frac{\cos\,\theta}{\sin^2\,\theta}\right) \div \left(\frac{1}{\cos^2\,\theta\sin^2\,\theta}\right)$$

$$\equiv \frac{\cos \theta}{\sin^2 \theta} \times \frac{\cos^2 \theta \sin^2 \theta}{1}$$

$$\equiv \cos^3 \theta$$

Write the expression in terms of sin and cos, using $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$.

Write the expression in terms of sin and cos, using $\sec^2 \theta = \left(\frac{1}{\cos \theta}\right)^2 \equiv \frac{1}{\cos^2 \theta}$ and $\csc^2 \theta \equiv \frac{1}{\sin^2 \theta}$.

Remember that $\sin^2 \theta + \cos^2 \theta \equiv 1$.

Remember to invert the fraction when changing from \div sign to \times .

Example 9

Solve the equations:

a
$$\sec \theta = -2.5$$

b
$$\cot 2\theta = 0.6$$

in the interval $0 \le \theta \le 360^{\circ}$.

a As sec $\theta = -2.5$ so $\cos \theta = -0.4$

Use $\cos \theta = \frac{1}{\sec \theta}$ to rewrite as $\cos \theta = \dots$

As $\cos \theta$ is -ve, θ is in 2nd and 3rd quadrants.

Remember that if you are using the quadrant diagram, the acute angle to the horizontal is $\cos^{-1}(+0.4)$.

Read off from the diagram.

As $\cot 2\theta = 0.6$

so
$$\tan 2\theta = \frac{5}{3}$$

Let $X = 2\theta$, so that you are solving $\tan X = \frac{5}{3}$, in the interval $0 \le X \le 720^\circ$.

X = 59.0°, 239.0°, 419.0°, 599.0°

So $\theta = 29.5^{\circ}$, 120°, 210°, 300° (3 s.f.)

Use $\tan 2\theta = \frac{1}{\cot 2\theta} = \frac{1}{(\frac{3}{5})} = \frac{5}{3}$.

Draw the quadrant diagram, with the acute angle $X = \tan^{-1} \frac{5}{3}$ drawn to the horizontal in the 1st and 3rd quadrants.

Remember that $X = 2\theta$.

Exercise 6C

Give solutions to these equations, correct to 1 decimal place.

1 Rewrite the following as powers of $\sec \theta$, $\csc \theta$ or $\cot \theta$:

$$\mathbf{a} \frac{1}{\sin^3 \theta}$$

$$\mathbf{b} \sqrt{\frac{4}{\tan^6 \theta}}$$

$$\mathbf{b} \ \sqrt{\frac{4}{\tan^6 \theta}} \qquad \qquad \mathbf{c} \ \frac{1}{2 \cos^2 \theta}$$

$$\mathbf{d} \; \frac{1 - \sin^2 \theta}{\sin^2 \theta}$$

$$e \frac{\sec \theta}{\cos^4 \theta}$$

f
$$\sqrt{\csc^3 \theta \cot \theta \sec \theta}$$
 g $\frac{2}{\sqrt{\tan \theta}}$

$$\mathbf{h} \frac{\csc^2 \theta \tan^2 \theta}{\cos \theta}$$

2 Write down the value(s) of $\cot x$ in each of the following equations:

a
$$5\sin x = 4\cos x$$

b
$$\tan x = -2$$

$$\mathbf{c} \quad 3\frac{\sin x}{\cos x} = \frac{\cos x}{\sin x}$$

3 Using the definitions of **sec**, **cosec**, **cot** and **tan** simplify the following expressions:

a
$$\sin \theta \cot \theta$$

c
$$\tan 2\theta \csc 2\theta$$

$$\mathbf{e} \sin^3 x \csc x + \cos^3 x \sec x$$

$$\mathbf{g} \sec^2 x \cos^5 x + \cot x \csc x \sin^4 x$$

b
$$\tan \theta \cot \theta$$

d
$$\cos \theta \sin \theta (\cot \theta + \tan \theta)$$

f
$$\sec A - \sec A \sin^2 A$$

4 Show that

a
$$\cos \theta + \sin \theta \tan \theta \equiv \sec \theta$$

c
$$\csc \theta - \sin \theta \equiv \cos \theta \cot \theta$$

$$\mathbf{e} \ \frac{\cos x}{1 - \sin x} + \frac{1 - \sin x}{\cos x} = 2 \sec x$$

b
$$\cot \theta + \tan \theta \equiv \csc \theta \sec \theta$$

d
$$(1 - \cos x)(1 + \sec x) \equiv \sin x \tan x$$

$$\mathbf{f} \ \frac{\cos \theta}{1 + \cot \theta} = \frac{\sin \theta}{1 + \tan \theta}$$

5 Solve, for values of θ in the interval $0 \le \theta \le 360^\circ$, the following equations. Give your answers to 3 significant figures where necessary.

a sec
$$\theta = \sqrt{2}$$

b cosec $\theta = -3$

c $5 \cot \theta = -2$

d cosec $\theta = 2$

e $3 \sec^2 \theta - 4 = 0$

f $5\cos\theta = 3\cot\theta$ **g** $\cot^2\theta - 8\tan\theta = 0$ **h** $2\sin\theta = \csc\theta$

6 Solve, for values of θ in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, the following equations:

a cosec
$$\theta = 1$$

c cot $\theta = 3.45$

e $\sec \theta = 2 \cos \theta$

g cosec $2\theta = 4$

b $\sec \theta = -3$

d $2 \csc^2 \theta - 3 \csc \theta = 0$

f $3 \cot \theta = 2 \sin \theta$

h $2 \cot^2 \theta - \cot \theta - 5 = 0$

7 Solve the following equations for values of θ in the interval $0 \le \theta \le 2\pi$. Give your answers in terms of π .

a
$$\sec \theta = -1$$

$$\mathbf{c} \quad \csc \theta = \frac{1}{2} \frac{2\sqrt{3}}{3}$$

b cot
$$\theta = -\sqrt{3}$$

d
$$\sec \theta = \sqrt{2} \tan \theta \left(\theta \neq \frac{\pi}{2}, \ \theta \neq \frac{3\pi}{2} \right)$$

- 8 In the diagram AB = 6 cm is the diameter of the circle and BT is the tangent to the circle at B. The chord AC is extended to meet this tangent at *D* and $\angle DAB = \theta$.
 - **a** Show that $CD = 6(\sec \theta \cos \theta)$.
 - **b** Given that CD = 16 cm, calculate the length of the chord AC.

- 6.4 You need to know and be able to use the identities
 - $1 + \tan^2 \theta = \sec^2 \theta$
 - $1 + \cot^2 \theta = \csc^2 \theta$

Example 10

Show that $1 + \tan^2 \theta = \sec^2 \theta$

As
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

so $\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} \equiv \frac{1}{\cos^2 \theta}$.

so
$$\left(\frac{\sin\theta}{\cos\theta}\right)^2 + 1 \equiv \left(\frac{1}{\cos\theta}\right)^2$$

$$\therefore 1 + \tan^2 \theta \equiv \sec^2 \theta$$

Divide both sides of the identity by $\cos^2 \theta$.

Use
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 and $\sec \theta = \frac{1}{\cos \theta}$

Show that $1 + \cot^2 \theta = \csc^2 \theta$

As
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$

so $\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} \equiv \frac{1}{\sin^2 \theta}$
so $1 + \left(\frac{\cos \theta}{\sin \theta}\right)^2 \equiv \left(\frac{1}{\sin \theta}\right)^2$
 $\therefore 1 + \cot^2 \theta \equiv \csc^2 \theta$

Divide both sides of the identity by $\sin^2 \theta$.

Use
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
 and $\csc \theta = \frac{1}{\sin \theta}$

Example 12

Given that $\tan A = -\frac{5}{12}$, and that angle A is obtuse, find the exact value of

 $\mathbf{a} \sec A$

b $\sin A$

a Method 1

Using 1 +
$$\tan^2 A = \sec^2 A$$

 $\sec^2 A = 1 + \frac{25}{144} = \frac{169}{144}$
 $\sec A = \pm \frac{13}{12}$

$$sec A = -\frac{13}{12} \bullet$$

Method 2

Draw a right-angled triangle with tan $\phi = \frac{5}{12}$.

Using Pythagoras' theorem, the hypotenuse is 13.

So
$$\sec \phi = \frac{13}{12}$$

$$\therefore \quad \sec A = -\frac{13}{12} \bullet$$

$$\tan^2 A = \frac{25}{144}$$

This does not take account of the fact that angle A is obtuse.

As angle A is obtuse, i.e. in the 2nd quadrant, sec A is -ve.

Since
$$\cos \phi = \frac{12}{13}$$

Angle ϕ , in the 1st quadrant, is equally inclined to the horizontal as angle A, in the 2nd quadrant, and so all trigonometrical ratios of A are numerically equal to those of ϕ .

As A is in the 2nd quadrant, $\cos A$ is -ve and therefore $\sec A$ is -ve.

b Using
$$\tan A \equiv \frac{\sin A}{\cos A}$$

 $\sin A \equiv \tan A \cos A$
So $\sin A \equiv \left(-\frac{5}{12}\right) \times \left(-\frac{12}{13}\right)$.
 $\equiv \frac{5}{13}$

$$\cos A = -\frac{12}{13}, \text{ since } \cos A = \frac{1}{\sec A}$$

Prove the identities

$$\mathbf{a} \operatorname{cosec}^4 \theta - \cot^4 \theta = \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta}$$

b
$$\sec^2 \theta - \cos^2 \theta \equiv \sin^2 \theta (1 + \sec^2 \theta)$$

a LHS =
$$\csc^4 \theta - \cot^4 \theta$$

$$\equiv (\csc^2 \theta + \cot^2 \theta)(\csc^2 \theta - \cot^2 \theta)$$

$$\equiv \csc^2 \theta + \cot^2 \theta$$

$$\equiv \frac{1}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta}$$

$$\equiv \frac{1 + \cos^2 \theta}{\sin^2 \theta}$$

As
$$1 + \cot^2 \theta = \csc^2 \theta$$
,
so $\csc^2 \theta - \cot^2 \theta = 1$.

This is the difference of two squares, so

Using cosec
$$\theta = \frac{1}{\sin \theta}$$
, $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

Using
$$\sin^2 \theta + \cos^2 \theta \equiv 1$$
.

factorise.

b RHS = $\sin^2 \theta + \sin^2 \theta \sec^2 \theta$ •

 $\equiv \frac{1 + \cos^2 \theta}{1 - \cos^2 \theta} = RHS$

= LHS

$$\equiv \sin^2 \theta + \frac{\sin^2 \theta}{\cos^2 \theta}$$

$$\equiv \sin^2 \theta + \tan^2 \theta$$

$$\equiv (1 - \cos^2 \theta) + (\sec^2 \theta - 1)$$

$$\equiv \sec^2 \theta - \cos^2 \theta$$

Write in terms of $\sin \theta$ and $\cos \theta$.

Use
$$\sec \theta = \frac{1}{\cos \theta}$$

$$\frac{\sin^2 \theta}{\cos^2 \theta} = \left(\frac{\sin \theta}{\cos \theta}\right)^2 = \tan^2 \theta.$$

Look at LHS. It is in terms of $\cos^2 \theta$ and $\sec^2 \theta$, so use $\sin^2 \theta + \cos^2 \theta \equiv 1$ and $1 + \tan^2 \theta \equiv \sec^2 \theta$.

Note: Try starting with the LHS, using $\cos^2 \theta \equiv 1 - \sin^2 \theta$ and $\sec^2 \theta \equiv 1 + \tan^2 \theta$.

The identities $1 + \tan^2 \theta = \sec^2 \theta$ and $1 + \cot^2 \theta = \csc^2 \theta$ extend the range of equations that can be solved.

Solve the equation $4 \csc^2 \theta - 9 = \cot \theta$, in the interval $0 \le \theta \le 360^\circ$.

The equation can be rewritten as

$$4(1 + \cot^2 \theta) - 9 = \cot \theta$$

So
$$4 \cot^2 \theta - \cot \theta - 5 = 0$$

$$(4 \cot \theta - 5)(\cot \theta + 1) = 0$$

So
$$\cot \theta = +\frac{5}{4} \text{ or } \cot \theta = -1$$

$$\therefore \tan \theta = \pm \frac{4}{5} \text{ or } \tan \theta = -1$$

For tan
$$\theta = \pm \frac{4}{5}$$

$$\theta = 38.7^{\circ}, 219^{\circ} (3 \text{ s.f.})$$

For
$$\tan \theta = -1$$

This is a quadratic equation. You need to write it in terms of one trigonometrical function only, so use $1 + \cot^2 \theta \equiv \csc^2 \theta$.

Multiply out and re-order.

Factorise. You could use the quadratic formula.

As $\tan \theta$ is +ve, θ is in the 1st and 3rd quadrants. The acute angle to the horizontal is $\tan^{-1} \frac{4}{5} = 38.7^{\circ}$.

Note: If α is the value the calculator gives for $\tan^{-1}\frac{4}{5}$, then the solutions are α and $(180^{\circ} + \alpha)$.

As $\tan \theta$ is -ve, θ is in the 2nd and 4th quadrants. The acute angle to the horizontal is $\tan^{-1}1 = 45^{\circ}$.

Note: If α is the value the calculator gives for $\tan^{-1}-1$ (= -45°), then the solutions are $(180^{\circ} + \alpha)$ and $(360^{\circ} + \alpha)$, as α is not in the given interval.

Exercise 6D

Give answers to 3 significant figures where necessary.

1 Simplify each of the following expressions:

a
$$1 + \tan^2 \frac{1}{2}\theta$$

b
$$(\sec \theta - 1)(\sec \theta + 1)$$

c
$$\tan^2 \theta (\csc^2 \theta - 1)$$

d
$$(\sec^2 \theta - 1) \cot \theta$$

$$\mathbf{e} \ (\csc^2 \theta - \cot^2 \theta)^2$$

f
$$2 - \tan^2 \theta + \sec^2 \theta$$

$$\mathbf{g} \frac{\tan \theta \sec \theta}{1 + \tan^2 \theta}$$

$$\mathbf{h} \ (1 - \sin^2 \theta)(1 + \tan^2 \theta)$$

$$\mathbf{i} \frac{\operatorname{cosec} \theta \cot \theta}{1 + \cot^2 \theta}$$

$$\mathbf{i} (\sec^4 \theta - 2\sec^2 \theta \tan^2 \theta + \tan^4 \theta)$$

k
$$4 \operatorname{cosec}^2 2\theta + 4 \operatorname{cosec}^2 2\theta \cot^2 2\theta$$

- **2** Given that $\csc x = \frac{k}{\csc x}$, where k > 1, find, in terms of k, possible values of $\cot x$.
- **3** Given that $\cot \theta = -\sqrt{3}$, and that $90^{\circ} < \theta < 180^{\circ}$, find the exact value of
 - $\mathbf{a} \sin \theta$
- **b** $\cos \theta$
- **4** Given that $\tan \theta = \frac{3}{4}$, and that $180^{\circ} < \theta < 270^{\circ}$, find the exact value of
 - **a** $\sec \theta$
- **b** $\cos \theta$
- **c** $\sin \theta$
- **5** Given that $\cos \theta = \frac{24}{25}$, and that θ is a reflex angle, find the exact value of
 - **a** $\tan \theta$
- **b** cosec θ
- **6** Prove the following identities:
 - **a** $\sec^4 \theta \tan^4 \theta \equiv \sec^2 \theta + \tan^2 \theta$
 - θ
 - $\mathbf{c} \operatorname{sec}^2 A(\cot^2 A \cos^2 A) \equiv \cot^2 A$
- **d** $1 \cos^2 \theta = (\sec^2 \theta 1)(1 \sin^2 \theta)$

 $e^{\frac{1-\tan^2 A}{1+\tan^2 A}} = 1-2\sin^2 A$

f $\sec^2 \theta + \csc^2 \theta \equiv \sec^2 \theta \csc^2 \theta$

b $\csc^2 x - \sin^2 x \equiv \cot^2 x + \cos^2 x$

- $\mathbf{g} \operatorname{cosec} A \operatorname{sec}^2 A \equiv \operatorname{cosec} A + \tan A \operatorname{sec} A$
- **h** $(\sec \theta \sin \theta)(\sec \theta + \sin \theta) \equiv \tan^2 \theta + \cos^2 \theta$
- **7** Given that $3 \tan^2 \theta + 4 \sec^2 \theta = 5$, and that θ is obtuse, find the exact value of $\sin \theta$.
- **8** Solve the following equations in the given intervals:
 - **a** $\sec^2 \theta = 3 \tan \theta$, $0 \le \theta \le 360^\circ$
 - **b** $\tan^2 \theta 2 \sec \theta + 1 = 0, -\pi \le \theta \le \pi$
 - **c** $\csc^2 \theta + 1 = 3 \cot \theta$, $-180^{\circ} \le \theta \le 180^{\circ}$
 - **d** $\cot \theta = 1 \csc^2 \theta$, $0 \le \theta \le 2\pi$
 - **e** $3 \sec \frac{1}{2}\theta = 2 \tan^2 \frac{1}{2}\theta, \ 0 \le \theta \le 360^{\circ}$
 - **f** $(\sec \theta \cos \theta)^2 = \tan \theta \sin^2 \theta$, $0 \le \theta \le \pi$
 - $\mathbf{g} \tan^2 2\theta = \sec 2\theta 1, \ 0 \le \theta \le 180^\circ$
 - **h** $\sec^2 \theta (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1, \ 0 \le \theta \le 2\pi$
- **9** Given that $tan^2 k = 2 \sec k$,
 - **a** find the value of $\sec k$
 - **b** deduce that $\cos k = \sqrt{2} 1$
 - **c** hence solve, in the interval $0 \le k \le 360^\circ$, $\tan^2 k = 2 \sec k$, giving your answers to 1 decimal place.
- 10 Given that $a = 4 \sec x$, $b = \cos x$ and $c = \cot x$,
 - **a** express b in terms of a
 - **b** show that $c^2 = \frac{16}{a^2 16}$
- **11** Given that $x = \sec \theta + \tan \theta$,
 - **a** show that $\frac{1}{x} = \sec \theta \tan \theta$.
 - **b** Hence express $x^2 + \frac{1}{x^2} + 2$ in terms of θ , in its simplest form.
- **12** Given that $2 \sec^2 \theta \tan^2 \theta = p$ show that $\csc^2 \theta = \frac{p-1}{p-2}$, $p \neq 2$.

6.5 You need to be able to use the inverse trigonometric functions, $\arcsin x$, $\arccos x$ and $\arctan x$ and their graphs.

For a one-to-one function you can draw the graph of its inverse by reflecting the graph of the function in the line y = x. The three trigonometric functions $\sin x$, $\cos x$ and $\tan x$ only have inverse functions if their domains are restricted so that they are one-to-one functions. The notations used for these inverse functions are $\arcsin x$, $\arccos x$ and $\arctan x$ respectively $(\sin^{-1} x, \cos^{-1} x \text{ and } \tan^{-1} x \text{ are also used})$.

See Chapter 2.

Example 15

Sketch the graph of $y = \arcsin x$.

$$y = \sin x, \, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

 $y = \arcsin x$

Step 1

Draw the graph of $y = \sin x$, with the restricted domain of $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

This is a **one-to-one** function, taking all

Step 2

Reflect in the line y = x.

The domain of $\arcsin x$ is $-1 \le x \le 1$; the range is $-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$

Remember that the x and y coordinates of points interchange when reflecting in y=x. For example:

$$\left(\frac{\pi}{2}, 0\right) \rightarrow \left(0, \frac{\pi}{2}\right), (0, 1) \rightarrow (1, 0)$$

a arcsin x is the angle α , in the interval $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$, for which $\sin \alpha = x$.

Sketch the graph of $y = \arccos x$.

 $y = \cos x$, $0 \le x \le \pi$.

$$y = \arccos x$$

Step 1

Draw the graph of $y = \cos x$, with the restricted domain of $0 \le x \le \pi$.

This is a **one-to-one** function, taking all values in the range $-1 \le \cos x \le 1$.

Step 2

Reflect in the line y = x.

The domain of $\arccos x$ is $-1 \le x \le 1$; the range is $0 \le \arccos x \le \pi$.

Note: $(0, 1) \to (1, 0), \left(\frac{\pi}{2}, 0\right) \to \left(0, \frac{\pi}{2}\right), (\pi, -1) \to (-1, \pi).$

arccos x is the angle α , in the interval $0 \le \alpha \le \pi$, for which $\cos \alpha = x$.

Example 17

Sketch the graph of $y = \arctan x$.

$$y = \tan x, \, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

Step 1

Draw the graph of $y = \tan x$, with the restricted domain of $-\frac{\pi}{2} < x < \frac{\pi}{2}$

This is a **one-to-one** function, with range $\tan x \in \mathbb{R}$.

 $y = \arctan x$

Step 2

Reflect in the line y = x.

The domain of $\arctan x$ is $x \in \mathbb{R}$; the range is $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$

a arctan x is the angle α , in the interval $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$, for which $\tan \alpha = x$.

Example 18

Work out, in radians, the values of

- **a** $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$
- **b** arccos(-1)
- **c** $\arctan(\sqrt{3})$

а

 $\arcsin\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\pi}{4} \text{ or } -0.785 \text{ (3 s.f.)}$

ŀ

 $arccos(-1) = \pi \text{ or } 3.14 (3 \text{ s.f.})$

You need to solve, in the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, the equation $\sin x = -\frac{\sqrt{2}}{2}$.

The angle to the horizontal is $\frac{\pi}{4}$ and, as sin is -ve, it is in the 4th quadrant.

You need to solve, in the interval $0 \le x \le \pi$, the equation $\cos x = -1$.

Draw the graph of $y = \cos x$.

C

You need to solve, in the interval $-\frac{\pi}{2} < x < \frac{\pi}{2}$, the equation $\tan x = \sqrt{3}$.

The angle to the horizontal is $\frac{\pi}{3}$ and, as tan is +ve, it is in the 1st quadrant.

Exercise 6E

1 Without using a calculator, work out, giving your answer in terms of π , the value of:

$$\mathbf{c}$$
 arctan(-1)

d
$$\arcsin(-\frac{1}{2})$$

e
$$\operatorname{arccos}\left(-\frac{1}{\sqrt{2}}\right)$$

f
$$\arctan\left(-\frac{1}{\sqrt{3}}\right)$$

g
$$\arcsin\left(\sin\frac{\pi}{3}\right)$$

e
$$\arcsin\left(-\frac{1}{\sqrt{2}}\right)$$
 f $\arctan\left(-\frac{1}{\sqrt{3}}\right)$ **g** $\arcsin\left(\sin\frac{\pi}{3}\right)$ **h** $\arcsin\left(\sin\frac{2\pi}{3}\right)$

2 Find the value of:

a
$$\arcsin(\frac{1}{2}) + \arcsin(-\frac{1}{2})$$

b
$$arccos(\frac{1}{2}) - arccos(-\frac{1}{2})$$

b
$$\operatorname{arccos}(\frac{1}{2}) - \operatorname{arccos}(-\frac{1}{2})$$
 c $\operatorname{arctan}(1) - \operatorname{arctan}(-1)$

3 Without using a calculator, work out the values of:

a
$$\sin(\arcsin\frac{1}{2})$$

b
$$\sin[\arcsin(-\frac{1}{2})]$$

$$\mathbf{c}$$
 tan[arctan(-1)]

4 Without using a calculator, work out the exact values of:

a
$$sin[arccos(\frac{1}{2})]$$

b
$$\cos[\arcsin(-\frac{1}{2})]$$

b
$$\cos[\arcsin(-\frac{1}{2})]$$
 c $\tan\left[\arccos\left(-\frac{\sqrt{2}}{2}\right)\right]$

d
$$sec[arctan(\sqrt{3})]$$

f
$$\sin\left[2\arcsin\left(\frac{\sqrt{2}}{2}\right)\right]$$

5 Given that $\arcsin k = \alpha$, where 0 < k < 1 and α is in radians, write down, in terms of α , the first two positive values of x satisfying the equation $\sin x = k$.

6 Given that x satisfies $\arcsin x = k$, where $0 < k < \frac{\pi}{2}$,

a state the range of possible values of x

b express, in terms of x,

$$i \cos k$$

Given, instead, that $-\frac{\pi}{2} < k < 0$,

c how, if at all, would it affect your answers to **b**?

- **7** The function f is defined as $f:x\to \arcsin x$, $-1\le x\le 1$, and the function g is such that g(x)=f(2x).
 - **a** Sketch the graph of y = f(x) and state the range of f.
 - **b** Sketch the graph of y = g(x).
 - **c** Define g in the form $g:x\to ...$ and give the domain of g.
 - **d** Define g^{-1} in the form $g^{-1}: x \to ...$
- **8** a Sketch the graph of $y = \sec x$, with the restricted domain $0 \le x \le \pi$, $x \ne \frac{\pi}{2}$.
 - **b** Given that $\operatorname{arcsec} x$ is the inverse function of $\sec x$, $0 \le x \le \pi$, $x \ne \frac{\pi}{2}$, sketch the graph of $y = \operatorname{arcsec} x$ and state the range of $\operatorname{arcsec} x$.

Mixed exercise 6F

Give any non-exact answers to equations to 1 decimal place.

- Solve $\tan x = 2 \cot x$, in the interval $-180^{\circ} \le x \le 90^{\circ}$.
- **2** Given that $p = 2 \sec \theta$ and $q = 4 \cos \theta$, express p in terms of q.
- **3** Given that $p = \sin \theta$ and $q = 4 \cot \theta$, show that $p^2q^2 = 16(1 p^2)$.
- **4 a** Solve, in the interval $0 < \theta < 180^{\circ}$, **i** cosec $\theta = 2 \cot \theta$ **ii** $2 \cot^2 \theta = 7 \csc \theta 8$
 - **b** Solve, in the interval $0 \le \theta \le 360^\circ$, **i** $\sec(2\theta - 15^\circ) = \csc 135^\circ$ **ii** $\sec^2 \theta + \tan \theta = 3$
 - **c** Solve, in the interval $0 \le x \le 2\pi$,
 - **i** $\csc(x + \frac{\pi}{15}) = -\sqrt{2}$ **ii** $\sec^2 x = \frac{4}{3}$
- **5** Given that $5 \sin x \cos y + 4 \cos x \sin y = 0$, and that $\cot x = 2$, find the value of $\cot y$.
- **6** Show that:
 - **a** $(\tan \theta + \cot \theta)(\sin \theta + \cos \theta) \equiv \sec \theta + \csc \theta$
 - $\mathbf{b} \; \frac{\csc x}{\csc x \sin x} \equiv \sec^2 x$
 - $\mathbf{c} \ (1 \sin x)(1 + \csc x) \equiv \cos x \cot x$
 - $\mathbf{d} \ \frac{\cot x}{\csc x 1} \frac{\cos x}{1 + \sin x} = 2 \tan x$
 - $\mathbf{e} \ \frac{1}{\csc \theta 1} + \frac{1}{\csc \theta + 1} \equiv 2 \sec \theta \tan \theta$
 - $\mathbf{f} \frac{(\sec \theta \tan \theta)(\sec \theta + \tan \theta)}{1 + \tan^2 \theta} \equiv \cos^2 \theta$

- 7 a Show that $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x} \equiv 2 \csc x$.
 - **b** Hence solve, in the interval $-2\pi \le x \le 2\pi$, $\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x} = -\frac{4}{\sqrt{3}}$.
- 8 Prove that $\frac{1+\cos\theta}{1-\cos\theta} \equiv (\csc\theta + \cot\theta)^2$.
- **9** Given that $\sec A = -3$, where $\frac{\pi}{2} < A < \pi$,
 - \mathbf{a} calculate the exact value of $\tan A$.
 - **b** Show that $\csc A = \frac{3\sqrt{2}}{4}$.
- **10** Given that $\sec \theta = k$, $|k| \ge 1$, and that θ is obtuse, express in terms of k:
 - $\mathbf{a} \cos \theta$
- **b** $\tan^2 \theta$
- $\mathbf{c} \cot \theta$
- **d** cosec θ
- Solve, in the interval $0 \le x \le 2\pi$, the equation $\sec\left(x + \frac{\pi}{4}\right) = 2$, giving your answers in terms of π .
- **12** Find, in terms of π , the value of $\arcsin(\frac{1}{2}) \arcsin(-\frac{1}{2})$.
- Solve, in the interval $0 \le x \le 2\pi$, the equation $\sec^2 x \frac{2\sqrt{3}}{3} \tan x 2 = 0$, giving your answers in terms of π .
- **14** a Factorise $\sec x \csc x 2 \sec x \csc x + 2$.
 - **b** Hence solve $\sec x \csc x 2 \sec x \csc x + 2 = 0$, in the interval $0 \le x \le 360^\circ$.
- **15** Given that $arctan(x-2) = -\frac{\pi}{3}$, find the value of x.
- On the same set of axes sketch the graphs of $y = \cos x$, $0 \le x \le \pi$, and $y = \arccos x$, $-1 \le x \le 1$, showing the coordinates of points in which the curves meet the axes.
- **17 a** Given that $\sec x + \tan x = -3$, use the identity $1 + \tan^2 x = \sec^2 x$ to find the value of $\sec x \tan x$.
 - **b** Deduce the value of
 - $\mathbf{i} \sec x$
- ii tan x
- **c** Hence solve, in the interval $-180^{\circ} \le x \le 180^{\circ}$, $\sec x + \tan x = -3$.
- **18** Given that $p = \sec \theta \tan \theta$ and $q = \sec \theta + \tan \theta$, show that $p = \frac{1}{q}$.
- **19** a Prove that $\sec^4 \theta \tan^4 \theta = \sec^2 \theta + \tan^2 \theta$.
 - **b** Hence solve, in the interval $-180^{\circ} \le \theta \le 180^{\circ}$, $\sec^4 \theta = \tan^4 \theta + 3 \tan \theta$.
- (Although integration is not in the specification for C3, this question only requires you to know that the area under a curve can be represented by an integral.)
 - **a** Sketch the graph of $y = \sin x$ and shade in the area representing $\int_0^{\frac{\pi}{2}} \sin x \, dx$.
 - **b** Sketch the graph of $y = \arcsin x$ and shade in the area representing $\int_0^1 \arcsin x \, dx$.
 - **c** By considering the shaded areas explain why $\int_0^{\frac{\pi}{2}} \sin x \, dx + \int_0^1 \arcsin x \, dx = \frac{\pi}{2}$.

Summary of key points

- 1 $\sec \theta = \frac{1}{\cos \theta}$ {sec θ is undefined when $\cos \theta = 0$, i.e. at $\theta = (2n + 1) 90^\circ$, $n \in \mathbb{Z}$ }
 - cosec $\theta = \frac{1}{\sin \theta}$ {cosec θ is undefined when $\sin \theta = 0$, i.e. at $\theta = 180n^{\circ}$, $n \in \mathbb{Z}$ }
 - $\cot \theta = \frac{1}{\tan \theta}$ {cot θ is undefined when $\tan \theta = 0$, i.e. at $\theta = 180n^{\circ}$, $n \in \mathbb{Z}$ }
 - $\cot \theta$ can also be written as $\frac{\cos \theta}{\sin \theta}$.
- **2** The graphs of $\sec \theta$, $\csc \theta$ and $\cot \theta$ are

- **3** Two further Pythagorean identities, derived from $\sin^2 \theta + \cos^2 \theta \equiv 1$, are $1 + \tan^2 \theta \equiv \sec^2 \theta$ and $1 + \cot^2 \theta \equiv \csc^2 \theta$
- **4** The inverse function of $\sin x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, is called $\arcsin x$; it has domain $-1 \le x \le 1$ and range $-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$

5 The inverse function of $\cos x$, $0 \le x \le \pi$, is called $\arccos x$; it has domain $-1 \le x \le 1$ and range $0 \le \arccos x \le \pi$.

6 The inverse function of $\tan x$, $-\frac{\pi}{2} < x < \frac{\pi}{2}$, is called $\arctan x$; it has domain $x \in \mathbb{R}$ and range $-\frac{\pi}{2} < \arctan x < \frac{\pi}{2}$.

