After completing this chapter you should be able to

- **1** sketch simple transformations of the graph of $y = e^x$
- **2** sketch simple transformations of the graph $y = \ln x$
- **3** solve equations involving e^x and $\ln x$
- **4** know what is meant by the terms exponential growth and decay
- **5** solve real life examples of exponential growth and decay.

The exponential and log functions

3.1 Exponential functions are ones of the form $y = a^x$. Graphs of these functions all pass through (0, 1) because $a^0 = 1$ for any number a.

Example 1

Sketch the graph of $f(x) = 2^x$ for the domain $x \in \mathbb{R}$. State the range of the function.

The gradient functions of these graphs are similar to the functions themselves.

Put these results in a table.

Function	Gradient	
$y = 1^x$	$grad = 0 \times 1^x$	
$y=2^x$	grad = 0.7×2^x	
$y = 3^x$	$grad = 1.1 \times 3^x$	
$y = 4^x$	$grad = 1.4 \times 4^{x}$	

You should be able to spot from this table that as a increases for the function $y = a^x$, so does the gradient function.

You should be able to deduce that there is going to be a number between 2 and 3 such that the gradient function would be the same as the function. This number is approximately equal to 2.718 and is represented by the letter 'e'. It is similar to π in the respect that it is an irrational number representing a number that exists in the real world.

The exponential function $y = e^x$ (where $e \approx 2.718$) is therefore the function in which the gradient is identical to the function. For this reason it is often referred to as **the** exponential function.

If
$$y = e^x$$
 then $\frac{dy}{dx} = e^x$

3.2 All exponential graphs will follow a similar pattern. The standard graph of $y = e^x$ can be used to represent 'exponential' growth, which is how population growth can be modelled in real life.

Example 2

Draw the graphs of:

$$\mathbf{a} \ y = \mathrm{e}^x$$

b
$$y = e^{-x}$$

A table of values will show you how rapidly this curve grows.

x	-2	-1	0	1	2	3	4	5
y	0.14	0.37	1	2.7	7.4	20	55	148

With these curves it is worth keeping in mind:

- as $x \to \infty$, $e^x \to \infty$ (it grows very rapidly)
- when x = 0, $e^0 = 1$ [(0, 1) lies on the curve]
- as $x \to -\infty$, $e^x \to 0$ (it approaches but never reaches the x-axis).

This curve is similar to the one in part **a** except that its value at x = 2 is e^{-2} and its value at x = -2 is e^{2} .

Hence it is a reflection of the curve of part **a** in the *y*-axis.

The graph in Example 2**b** is often referred to as exponential decay. It is used as a model in many examples from real life including the fall in value of a car as well as the decay in radioactive isotopes.

Example 3

Draw graphs of the exponential functions:

a
$$y = e^{2x}$$

b
$$y = 10e^{-x}$$

c
$$y = 3 + 4e^{\frac{1}{2}x}$$

x	-3	0	3
y	0.002	1	403

If you calculate some values it can give you an idea of the shape of the graph.

The y values of $y = e^{2x}$ are the 'square' of the y values of $y = e^x$.

b	1/ =	$= 10e^{-x}$
ν	Ŋ	100

Calculating some y values helps you sketch the curve.

The y values of $y = 10e^{-x}$ are 10 times bigger than the y values of $y = e^{-x}$.

		<u>1</u> .
C	y = 3	$+4e^{2}$

x	-3	0	3
y	3.9	7	21

Since $e^{\frac{1}{2}x} > 0$ $3 + 4e^{\frac{1}{2}x} > 3$. Range of function is y > 3.

Example 4

The price of a used car can be represented by the formula

$$P = 16\,000\,\mathrm{e}^{-\frac{t}{10}}$$

where P is the price in £'s and t is the age in years from new.

Calculate:

- **a** the new price
- **b** the value at 5 years old
- **c** what the model suggests about the eventual value of the car.

Use this to sketch the graph of *P* against *t*.

a Substitute t = 0 into $P = 16000 e^{-\frac{0}{10}}$ = 16000×1 The new price is when t = 0. Remember $e^0 = 1$.

The new price is £16 000.

Substitute t = 5 into $P = 16000 e^{-\frac{5}{10}}$ = $16000 e^{-\frac{1}{2}}$ = £9704.49

Its price at 5 years old is when t = 5.

The price after 5 years is £9704.49.

c As $t \to \infty$, $e^{-\frac{t}{10}} \to 0$ Therefore $P \to 16000 \times 0 = 0$.

The eventual value is zero.

For the eventual value, let $t \to \infty$.

Use the values from parts \mathbf{a} , \mathbf{b} and \mathbf{c} to sketch the graph.

Exercise 3A

1 Sketch the graphs of

a
$$y = e^x + 1$$

b
$$y = 4e^{-2x}$$

c
$$y = 2e^x - 3$$

d
$$y = 4 - e^x$$

e
$$y = 6 + 10e^{\frac{1}{2}x}$$

f
$$y = 100e^{-x} + 10$$

2 The value of a car varies according to the formula

$$V = 20\,000\,\mathrm{e}^{-\frac{t}{12}}$$

where V is the value in £'s and t is its age in years from new.

- **a** State its value when new.
- \boldsymbol{b} Find its value (to the nearest £) after 4 years.
- **c** Sketch the graph of V against t.

3 The population of a country is increasing according to the formula

$$P = 20 + 10 e^{\frac{t}{50}}$$

where P is the population in thousands and t is the time in years after the year 2000.

- **a** State the population in the year 2000.
- **b** Use the model to predict the population in the year 2020.
- **c** Sketch the graph of *P* against *t* for the years 2000 to 2100.
- 4 The number of people infected with a disease varies according to the formula

$$N = 300 - 100 \,\mathrm{e}^{-0.5t}$$

where N is the number of people infected with the disease and t is the time in years after detection.

- a How many people were first diagnosed with the disease?
- **b** What is the long term prediction of how this disease will spread?
- **c** Graph *N* against *t*.
- **5** The value of an investment varies according to the formula

$$V = A e^{\frac{t}{12}}$$

where V is the value of the investment in £'s, A is a constant to be found and t is the time in years after the investment was made.

- **a** If the investment was worth £8000 after 3 years find A to the nearest £.
- **b** Find the value of the investment after 10 years.
- c By what factor will be the original investment have increased by after 20 years?
- 3.3 To study the exponential function further, it becomes necessary to introduce its inverse function. From Chapter 2 you should know that inverse functions perform the 'opposite' operation to a function, in exactly the same way as '+4' and '-4' and ' x^2 ' and ' x^2 ' are inverse operations.
- the inverse to e^x is $\log_e x$ (often written $\ln x$).

Example 5

Solve the equations

a
$$e^x = 3$$

b
$$\ln x = 4$$

a When
$$e^x = 3$$

$$x = \ln 3$$

b When $\ln x = 4$

$$x = e^4$$

The key to solving any equation is knowing the inverse operation.

When $x^2 = 10$, $x = \sqrt{10}$.

The inverse of e^x is $\ln x$ and vice versa.

Using your knowledge of inverse functions, the graph of $\ln x$ will be a reflection of e^x in the line y = x.

The function $f(x) = \ln x$ therefore has a domain of $\{x \in \mathbb{R}, x > 0\}$ and a range of $\{f(x) \in \mathbb{R}\}$.

The important points about the graph $y = \ln x$ are:

- as $x \to 0$, $y \to -\infty$
- $\ln x$ does not exist for negative numbers
- when x = 1, y = 0
- as $x \to \infty$, $y \to \infty$ (slowly).

Example 6

Sketch the graphs of

a
$$y = \ln(3 - x)$$

b
$$y = 3 + \ln(2x)$$

When $x \to 3$, $y \to -\infty$. y does not exist for values of x bigger than 3. When x = 2, $y = \ln (3 - 2) = \ln 1 = 0$. As $x \to -\infty$, $y \to \infty$ (slowly).

When $x \to 0$, $y \to -\infty$. When $x = \frac{1}{2}$, $y = 3 + \ln 1 = 3$. As $x \to \infty$, $y \to \infty$ (slowly).

Example 7

Solve the equations:

a
$$e^{2x+3}=4$$

b
$$2 \ln x + 1 = 5$$

These questions are solved by changing the subject of the formula and using the fact that $\ln x$ and e^x are inverse functions.

a
$$e^{2x+3} = 4$$
 - $2x + 3 = \ln 4$

$$2x + 3 = \ln 4$$

 $2x = \ln 4 - 3$

$$x = \frac{\ln 4 - 3}{2}$$

$$= \frac{\ln 4}{2} - \frac{3}{2}$$
$$= \ln 2 - \frac{3}{2}$$

$$2 \ln x + 1 = 5$$

$$2 \ln x = 4$$

$$\ln x = 2 \leftarrow x = e^2$$

The inverse to e^x is $\ln x$.

Sometimes questions ask you to put an answer in a particular form. Note that

$$\frac{\ln 4}{2} = \frac{1}{2} \ln 4 = \ln 4^{\frac{1}{2}} = \ln 2$$

Isolate $\ln x$.

The inverse of $\ln x$ is e^x .

Example 8

The number of elephants in a herd can be represented by the equation

$$N = 150 - 80 \,\mathrm{e}^{-\frac{t}{40}}$$

where *N* is the number of elephants in the herd and *t* is the time in years after the year 2003.

Calculate:

a the number of elephants in the herd in 2003

b the number of elephants in the herd in 2007

c the year when the population will grow to above 100

d the long term population of the herd as predicted by the model.

Use all of the above information to sketch a graph of *N* against *t* for the model.

 $N = 150 - 80 e^{-\frac{t}{40}}$

In the year 2003, $N = 150 - 80 e^{-\frac{0}{40}}$ $= 150 - 80 \times 1$

= 70

 $e^0 = 1$

b In the year 2007,

$$N = 150 - 80 e^{-\frac{4}{40}}$$

$$= 150 - 72.4$$

= 78 (to nearest elephant)

For 2007 substitute t = 4.

For 2003 substitute t = 0.

c If population is 100, then

$$100 = 150 - 80 e^{-\frac{t}{40}}$$

$$80e^{-\frac{t}{40}} = 50$$

$$e^{-\frac{t}{40}} = \frac{50}{80}$$

$$-\frac{t}{40} = \ln \frac{50}{80} \bullet -$$

$$t = 18.8$$
 years

Therefore the population will be over 100 by the year 2022.

Long term suggests as $t \rightarrow \infty$.

Substitute N = 100.

The inverse of e^x is $\ln x$.

Add 18.8 years to 2003 and round up answer.

Isolate $e^{-\frac{t}{40}}$.

d As $t \to \infty$, $e^{-\frac{t}{40}} \to 0$ and therefore

$$N \to 150 - 80 \times 0 = 150$$

The long term population as predicted by the model is 150.

Use all the above information to sketch the graph.

Exercise 3B

1 Solve the following equations giving exact solutions:

a
$$e^x = 5$$

b
$$\ln x = 4$$

c
$$e^{2x} = 7$$

d
$$\ln \frac{x}{2} = 4$$

e
$$e^{x-1} = 8$$

f
$$ln(2x + 1) = 5$$

$$g e^{-x} = 10$$

h
$$ln(2-x)=4$$

$$e^{4x} - 3 = 8$$

2 Solve the following giving your solution in terms of ln 2:

a
$$e^{3x} = 8$$

b
$$e^{-2x} = 4$$

$$e^{2x+1} = 0.5$$

3 Sketch the following graphs stating any asymptotes and intersections with axes:

a
$$y = \ln(x+1)$$

b
$$y = 2 \ln x$$

c
$$y = \ln(2x)$$

d
$$y = (\ln x)^2$$

e
$$y = \ln(4 - x)$$

f
$$y = 3 + \ln(x + 2)$$

4 The price of a new car varies according to the formula

$$P = 15\,000\,\mathrm{e}^{-\frac{t}{10}}$$

where *P* is the price in £'s and *t* is the age in years from new.

- **a** State its new value.
- **b** Calculate its value after 5 years (to the nearest £).
- **c** Find its age when its price falls below £5000.
- **d** Sketch the graph showing how the price varies over time. Is this a good model?
- **5** The graph opposite is of the function $f(x) = \ln(2 + 3x) \{x \in \mathbb{R}, x > a\}.$

- **b** Find the value of *s* for which f(s) = 20.
- **c** Find the function $f^{-1}(x)$ stating its domain.
- **d** Sketch the graphs f(x) and $f^{-1}(x)$ on the same axes stating the relationship between them.

- The graph opposite is of the function $g(x) = 2e^{2x} + 4 \{x \in \mathbb{R}\}.$
 - **a** Find the range of the function.
 - **b** Find the value of *p* to 2 significant figures.
 - **c** Find $g^{-1}(x)$ stating its domain.
 - **d** Sketch g(x) and $g^{-1}(x)$ on the same set of axes stating the relationship between them.

7 The number of bacteria in a culture grows according to the following equation:

$$N = 100 + 50 e^{\frac{t}{30}}$$

where N is the number of bacteria present and t is the time in days from the start of the experiment.

- **a** State the number of bacteria present at the start of the experiment.
- **b** State the number after 10 days.
- **c** State the day on which the number first reaches 1 000 000.
- **d** Sketch the graph showing how N varies with t.
- **8** The graph opposite shows the function $h(x) = 40 10 e^{3x} \{x > 0, x \in \mathbb{R}\}.$
 - **a** State the range of the function.
 - **b** Find the exact coordinates of A in terms of ln 2.
 - **c** Find $h^{-1}(x)$ stating its domain.

Mixed exercise 3C

1 Sketch the following functions stating any asymptotes and intersections with axes:

a
$$y = e^x + 3$$

b
$$y = \ln(-x)$$

c
$$y = \ln(x + 2)$$

d
$$y = 3 e^{-2x} + 4$$

e
$$y = e^{x+2}$$

f
$$y = 4 - \ln x$$

2 Solve the following equations, giving exact solutions:

a
$$ln(2x - 5) = 8$$

b
$$e^{4x} = 5$$

c
$$24 - e^{-2x} = 10$$

d
$$\ln x + \ln(x - 3) = 0$$
 e $e^x + e^{-x} = 2$

$$e^{x} + e^{-x} = 2$$

f
$$\ln 2 + \ln x = 4$$

3 The function $c(x) = 3 + \ln(4 - x)$ is shown below.

- **a** State the exact coordinates of point A.
- **b** Calculate the exact coordinates of point B.
- **c** Find the inverse function $c^{-1}(x)$ stating its domain.
- **d** Sketch c(x) and $c^{-1}(x)$ on the same set of axes stating the relationship between them.

4 The price of a computer system can be modelled by the formula

$$P = 100 + 850 \,\mathrm{e}^{-\frac{t}{2}}$$

where *P* is the price of the system in £s and *t* is the age of the computer in years after being purchased.

- **a** Calculate the new price of the system.
- **b** Calculate its price after 3 years.
- **c** When will it be worth less than £200?
- **d** Find its price as $t \rightarrow \infty$.
- **e** Sketch the graph showing *P* against *t*.

Comment on the appropriateness of this model.

5 The function f is defined by

$$f: x \to \ln(5x - 2) \{x \in \mathbb{R}, x > \frac{2}{5}\}.$$

- **a** Find an expression for $f^{-1}(x)$.
- **b** Write down the domain of $f^{-1}(x)$.
- c Solve, giving your answer to 3 decimal places,

$$ln(5x - 2) = 2$$
.

6 The functions f and g are given by

$$f: x \to 3x - 1 \{x \in \mathbb{R}\}$$

 $g: x \to e^{\frac{x}{2}} \{x \in \mathbb{R}\}$

- **a** Find the value of fg(4), giving your answer to 2 decimal places.
- **b** Express the inverse function $f^{-1}(x)$ in the form $f^{-1}: x \to ...$
- **c** Using the same axes, sketch the graphs of the functions f and gf. Write on your sketch the value of each function at x = 0.
- **d** Find the values of x for which $f^{-1}(x) = \frac{5}{f(x)}$.

- 7 The points P and Q lie on the curve with equation $y = e^{\frac{1}{2}x}$. The *x*-coordinates of P and Q are ln 4 and ln 16 respectively.
 - a Find an equation for the line PQ.
 - **b** Show that this line passes through the origin *O*.
 - c Calculate the length, to 3 significant figures, of the line segment PQ.

 \overline{E}

8 The functions f and g are defined over the set of real numbers by

$$f: x \to 3x - 5$$
$$g: x \to e^{-2x}$$

- **a** State the range of g(x).
- **b** Sketch the graphs of the inverse functions f^{-1} and g^{-1} and write on your sketches the coordinates of any points at which a graph meets the coordinate axes.
- c State, giving a reason, the number of roots of the equation

$$f^{-1}(x) = g^{-1}(x).$$

- **d** Evaluate $fg(-\frac{1}{3})$, giving your answer to 2 decimal places.
- **9** The function f is defined by $f: x \to e^x + k$, $x \in \mathbb{R}$ and k is a positive constant.
 - **a** State the range of f(x).
 - **b** Find $f(\ln k)$, simplifying your answer.
 - **c** Find f^{-1} , the inverse function of f, in the form $f^{-1}: x \to ...$, stating its domain.
 - **d** On the same axes, sketch the curves with equations y = f(x) and $y = f^{-1}(x)$, giving the coordinates of all points where the graphs cut the axes.

10 The function f is given by

$$f: x \rightarrow \ln(4-2x) \quad \{x \in \mathbb{R}, x < 2\}$$

- **a** Find an expression for $f^{-1}(x)$.
- **b** Sketch the curve with equation $y = f^{-1}(x)$, showing the coordinates of the points where the curve meets the axes.
- **c** State the range of $f^{-1}(x)$.

The function g is given by

$$g: x \to e^x \quad \{x \in \mathbb{R}\}$$

d Find the value of gf(0.5).

11 The function f(x) is defined by

$$f(x) = 3x^3 - 4x^2 - 5x + 2$$

- **a** Show that (x + 1) is a factor of f(x).
- **b** Factorise f(x) completely.
- **c** Solve, giving your answers to 2 decimal places, the equation

$$3[\ln(2x)]^3 - 4[\ln(2x)]^2 - 5\ln(2x) + 2 = 0 \quad x > 0$$

Summary of key points

Exponential functions are ones of the form $y = a^x$. They all pass through the point (0, 1).

The domain is all the real numbers. The range is f(x) > 0.

- **2** The exponential function $y = e^x$ (where $e \approx 2.718$) is a special function whose gradient is identical to the function.
- **3** The inverse function to e^x is $\ln x$.
- **4** The natural log function is a reflection of $y = e^x$ in the line y = x. It passes through the point (1, 0).

The domain is the positive numbers. The range is all the real numbers.

- 5 To solve an equation using $\ln x$ or e^x you must change the subject of the formula and use the fact that they are inverses of each other.
- **6** Growth and decay models are based around the exponential equations

where A and k are positive numbers.